

SHINMEIGIKOU CO., LTD METHOD INFORMATION

METHOD

THE ALL CASING METHOD

This is a method of injecting a casing tube into the ground with a hydraulic jack while repeatedly rotating it with a vibrating device, and excavating earth and sand with a hammer grab.

LOW NOISE AND LOW VIBRATION ALL-PURPOSE METHOD

The all casing method is the method of bored piles method with high reliability.

Not only widely used with many types of geology and also environmentally friendly due to low noise and low vibration

THE METHOD MAXIMIZES ITS POTENTIAL FOR HARD GROUND

All Casing Method The carbide bit installed onto the tip and the revolving excavation method enables the construction work free from ground collapse. And also, the high-precision verticality makes construction of large - bore or great depth with low vibration and noise available.

STRONG POINTS	Large - bore and great depth Low noise and low vibration
	Suitable to hard ground

CONSTRUCTION SYSTEM DIAGRAM

CONSTRUCTION EQUIPMENT

Equipment	Function
 Crawler crane 	Excavation, support work
 Hammer grab 	Excavation
 Tubing device 	Excavation
 Counterweight 	To balanced counter force
 Casing tube 	Excavation
 Tremie pipe 	Injection of fresh concrete
• Slope of cement	Injection of fresh concrete
mixer truck	
• Diesel	Power supply
generator	
 High pressure 	Washing
washer	
● Sludge tank	Sludge treatment

ENLARGED BOTTOM PILE CONSTRUCTION METHOD

IT IS APPLICABLE TO ANY REVOLVING TUBING MACHINE

When a bottom-enlarged drilling machine is used in the full circle slewing enlarged bottom pile method, it is applicable to any revolving tubing machine, and the bottom diameter of the shaft portion diameter of +200 mm to +1000 mm is defined as the scope of enlarged bottom pile construction.

SG bottom-enlarged machine

ЫId

Operatin device

for expanding arms

remie pipe

Weight

Swivel device

Push-in cylinder

Hydraulic

unit

SKS METHOD

LOW NOISE AND VIBRATION METHOD)

NO HYDRAULIC OIL SO DO NOT POLLUTE GROUNDWATER

As its main material, high-strength wear-proof special steel (1200kg/cm2) to be applicable to cast-in-place pile with large diameter ranging from 1000mm to 2000mm. And it is using the opening and closing method as hammerer grab.

Which can solve the both of two problems of "noise and vibration" especially at downtown and residential zones. Also you can use this instead of conventional hammer grab for main excavation and obstacle-removal tasks in the conventional All Casing(BENOTO) method.

LOW NOISE

By removing crown and crown head which were the noise source of conventional hammer grab, excavation work with low noise is achieved.

LOW VIBRATION

With conventional hammer grabs, we have needed to drop a hammer from a height of a certain degree to do excavation works.

When it is fallen by its own weight, vibration occurred. But, our newly developed hammer grab does not require height for falling to do excavation work.

The biggest advantage of clamshell grab is its low vibration and noise at the time of excavation work compared to those caused by conventional hammer grabs.

If you need to change the machine's weight for underwater drilling or as required, you can easily change the weight.

AC METHOD THIS IS HAMMER GRAB SOIL REMOVING METHOD USING ALL CASING METHOD

It is a hammer grab excavation discharge. Suitable for cast-in-place piling method (all casing construction)

(
NETIS	QS-130012-A
Registration	
No.	
Novelty and	①What kind of novelty does it have? (What was improved compared to conventional
expected	technology?)
benefits	 By installing shell's opening and closing device at the external side of the main body, the volume of the excavated soil in its container was expanded.
	 By increasing the weight of the main body, its excavating power was improved. Enabled the attachment of removable counterweight.
	② What are its expected benefits? (What are the advantages of using its new technology?)
	 By expanding the volume of the excavated soil in its container and increasing the weight of the main body, the volume of the excavated and removed per cycle soil will increased.
	2. By increasing and decreasing the counterweight, effective handling will be enabled
	according to ground condition (soil property, retained water in the casing and so on)
	 By improved construction efficiency, the reduction of construction expenses and time is achieved.
Applicable	① Applicable ranges
ranges	 Soil property: visicosity soil/ clay soil, sand and sandy soil, rudaceous soil, round stones, soft rock (I) (Has been applied to N value 50 of Soft Rock Type I or the like)
	2. Applicable diameters: φ 1000, φ 1200, φ 1500 and φ 2000mm
	3. Digging length: Max. 50 m (Our longest record is 54.6 m)
	② Applicable ranges, which are especially effective
	1. Soft ground
	2. Excavation of underwater
	3. Site which requires a reduction of construction time
	③Non applicable range
	1. Soft rock (II), medium-hard rock, hard rock
	1. Son fock (1), incurant-hard fock, hard fock
Points of	In construction
concern	1. When the level of the water retained in the casing is high, or when there are any hard
concern	soil in the middle of the casing, to Adjust the counterweight.
	2. Since the weight is increased, operating radius of crawler crane and other points
	should be reviewed.

CHARACTERISTICS OF CLAMSHELL GRAB

Мо	del	Weight (kg)	Full Length (mm)	Open width (mm)	Applicab le casing (mm)	Diameter of casing (mm)	Grab capacity (m3)
SKS-	-20 ∏	3910	3685	1840	1980	1890	0.89
SKS-	18 II	3570	3576	1640	1780	1690	0.62
SKS-	-15 Ⅲ	3270	3408	1340	1480	1390	0.32
SKS-	13∎	1720	2580	1140	1280	1190	0.25
SKS-	-12 Ⅲ	1620	2545	1040	1180	1090	0.20
SKS-	10 II	1520	2434	840	980	890	0.11

			Conventional hammer grabs	Newly developed hammer grabs	Hydraulic hammer grabs
		Low noise	Δ	O	0
		Low vibration	0	O	0
	3685	Excavation speed	0	0	Δ
		Underwater drilling	0	O	Δ
		Maintenance	0	O	Δ
		Machine's weight	Fix	Adjustable	Fix
40		- Price	0	O	0

CONVENTIONAL HAMMER GRAB

AC HAMMER GRAB

Status of installation of counterweight

Opening and closing devise of shell Counterweights (Can be attached four pcs of them at its circumference)

BKF METHOD

(LOW NOISE AND VIBRATION METHOD) ADAPT TO DRILLING IN VARIOUS ENVIRONMENTS

BKF method is a method of hammer grab method using hydraulic transmission system. It has low vibration and noise and it replaced a conventional excavation method using hammer grab which has big vibration and noise using all casing methods such as shaking type and full rotary type.

When shell is open

When shell is closed

	Hydraulic pressure source and high pressure hose are not required.	
STRONG POINTS	By its low noise and vibration, the influence on surrounding environment is	
	lessened.	
	Power generator or unit is not required.	

	AL	BL	ФС	ΦD	Weight	Output
Φ1000	3580	3470	Ф830	Φ844	2.3t	8.9t
Φ1200	3700	3600	Φ1030	Φ1014	2.9t	11.2t
Φ1500	3920	3780	Ф1330	Ф1312	4.8t	10.4t
Φ1800	4180	4000	Ф1630	Φ1330	5.5t	13.0t
Φ2000	4200	4180	Ф1830	Φ1530	6.0t	13.8t

ADAPTABLE ENVIRONMENT

Since it has low noise and vibration, it can be adopted to the excavations under the following environments.

educational institutions.

CASING INSIDE ROTARY-TYPE HYDRAULIC HAMMER GRAB NETIS (AK HYDRAULIC CATCHER)

AK method does not use conventional hammer grab method which excavates using the impact of free fall. Instead of it, after gently putting AK hydraulic catcher at the bottom of the casing, it excavates using the rotation and pushing force of all-round rotation excavator. So it has low level of noise and vibration.

All hydraulic cylinders which are used for pressure bonding for the main body and the casing and used for opening and closing the shell are driven by wire. Because of this, the method does not require any hydraulic hoses or units, it is a type of hydraulic hammer though.

tics	1.	Environment - friendly
		Rotates the catcher in the casing using the force of the all-round rotation
		excavator.
		Excavation with "low vibration and noise" is available.
	2.	Consident safety
		By its excavation which done by rotating its catcher at the lowest position of
		the casing, safe construction is achieved.
	3.	Massive excavation
		By utilizing torque and pushing force of the all-round rotation excavator,
		"certain" and "massive" excavation is achieved.
	4.	No problem with water level
		Not like free-fall style hammer, there is almost no problem on water
		resistance even when it was used with high water level.
	5.	Applicable to any soil properties
		Since it has wide opening of its shell in the catcher, it is suited with any soil
		properties.
	6.	Applicable by using wire
		Since it does not use hydraulic hose or unit, and its main body is operated

Also it is economical because its cycle time is close to conventional hammer.

only by "wire", there is no risk of oil leakage.

AK Hydraulic Catcher

	Comparison of con	nstruct	ion methods	
	Conventional methods		AK Hydraulic Catcher	
	Hammer grab (wire hammer)			
	vire Tubing device machine falling Shell			
1.	Free fall of hammer grab in the casing Shell is intrusively into the ground with its collisionHigh vibration and noise	1. 2.	Gently put a catcher in the casingLow vibration After the landing, tension the wire a little. Device wi be fixed to the casing in this place.	
2.	When the water level is high, the hammer is affected by resistance of the water, so its excavation power declines.	3. 4.	Rotate/ push-in the casingNo noise from hammer. Stop the casing and loosen the 1st wire and detach th extension devise from the casing.	
3.	Big noise at the time of soil removal (Noise due to Crown)	5. 6.	Pull the second wire and close the shell with cylinder and remove the soil. Pull the first and second wires at the same time to pu	
		7.	up the main body. Soil will be removed only by putting the machine of the groundNo noise at the time of soil removal.	

METHOD

2

THE EXISTING PILE EXTRACTING METHOD

We use methods for pulling out existing piles, such as "Rotary Multiple Pulley System" that uses a hydraulic auger in combination with a rotary multiple pulleys for pulling out a pile, and "Avolon Casing Auger Construction Method" that drills and extracts the circumference of the pile.

THE EXISTING PILE HAS BECOME AN OBSTACLE IN THE GROUND TO EXTRACTED CONSTRUCTION

The existing pile extracted constrution is the use of casing to drill down through the pile head 1m, combined using a auger outside the casing and pumping slurry into. then use a crane or specialized equipment to extracted the pile

There are many construction methods. At SHINMEIGIKOU company, we use methods, Rotary multiple pulleys method and Avolon casing auger method

Strong point	Because drilling to the top of the pile can easily to extracted its	
	After extracting the pile, you can quickly move to another pile for construction	

🔆 ROTARY MULTIPLE PULLEYS METHOD

Using 75T and 55T telescopic boom crawler cranes as its base machine, in this method, rotary multiple pulleys for pulling-out piles and hydraulic auger are simultaneously used to pull out piles.

Advantage	The multiple pulleys of pulling-out piles system work together on one crawler crane. So it is effectively used at narrow or confined spaces.
Disadvantage	Since its main target is construction works at narrow or confined spaces, it take a long construction period, including a large number of preparation work, compared to other methods.

AVOLON CASING AUGER CONSTRUCTION METHOD

In this method, from the rough terrain crane or crawler base are installed the leader shaft, then from this leader shaft to install the auger and casing in set. This is most popular and common method, and frequently adopted at many general construction sites.

Also it is applicable for various construction site conditions such as wide, confined, narrow sites or for cases where the pile head is deeply buried.

EARTH DRILL METHOD

In this method, when constructing a pile, a surface casing tube is used to protect the hole wall, a stabilizer mainly composed of bentonite is used to protect it, and a drilling bucket is used to drill and discharge soil.

TS POTENTIAL FOR DRILLING FOR LARGE DIAMETER OR DEEP DEPTH HOLE WAS MAXIMIZED

The earth drill machine can make low noise and vibration. Because due to high mobility and high construction productivity can available for construction in narrow spaces onsite the city.

Moreover, the diameter of excavation can be changed easily, so it can be constructed with large diameter piles and large depths

STRONG	POINTS

It has a bucket which is selectable according to site characteristics and soil property. By its low noise and vibration, the influence on surrounding environt us lessened. Since it offers a large amount of discharged earth and sand per bucket, per 1 time, a very high drilling speed is available. Available for construction in narrow spaces.

METHOD

CONSTRUCTION DIAGRAM

SHINMEIGIKOU CO., LTD

Head Office

Tokyo Office

〒818-0114
868-17, Oaza Kitadani, Dazaifu City, Fukuoka Prefecture, Japan TEL: +81 (92) 408-4108 FAX: +81 92 (408) 4109
〒135-0016
2F, 3-27-30, Toyo, Koto-Ku, Tokyo, Japan TEL: +81 (3) 6666-7063 FAX: +81 (3) 6666-7073